
A note on the global existence of small amplitude solutions to a generalized

Davey–Stewartson system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 245208

(http://iopscience.iop.org/1751-8121/42/24/245208)

Download details:

IP Address: 171.66.16.154

The article was downloaded on 03/06/2010 at 07:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/24
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 245208 (13pp) doi:10.1088/1751-8113/42/24/245208

A note on the global existence of small amplitude
solutions to a generalized Davey–Stewartson system

Alp Eden1,2 and Irma Hacinliyan3

1 Department of Mathematics, Bogazici University, 34342 Bebek-Istanbul, Turkey
2 TUBITAK, Feza Gursey Institute, 34684 Cengelkoy-Istanbul, Turkey
3 Department of Mathematics, Istanbul Technical University, 34469 Maslak-Istanbul, Turkey

E-mail: hacinliy@itu.edu.tr

Received 28 January 2009, in final form 30 April 2009
Published 29 May 2009
Online at stacks.iop.org/JPhysA/42/245208

Abstract
In this paper, we are interested in the Cauchy problem for a generalized Davey–
Stewartson (GDS) system. We establish the global time existence of small mass
solutions for the GDS system in the elliptic–hyperbolic–hyperbolic case.

PACS number: 02.30.Jr
Mathematics Subject Classification: 35A05, 35E15, 35M10

1. Introduction

We continue with our study of the elliptic–hyperbolic–hyperbolic (EHH) case of the
generalized Davey–Stewartson (GDS) system that was initiated in [1]. The GDS system was
introduced in [2] as a model for wave propagation in an infinite elastic medium with coupled
stresses. The resulting system of partial differential equations was put in a non-dimensional
form in [1] as

iut + �u = χ |u|2u + b(αφ1,x + φ2,y)u,

φ1,xx − φ1,yy − c2
1 − c2

2

c2

√
c2
g − c2

2

φ2,xy = α(|u|2)x,

φ2,xx − c2
1

(
c2
g − c2

1

)
c2

2

(
c2
g − c2

2

)φ2,yy − c2
1 − c2

2

c2

√
c2
g − c2

2

φ1,xy = (|u|2)y,

u(0, x, y) = u0(x, y),

(1)

where u : [0,∞) × R
2 → C, φi : [0,∞) × R

2 → R(i = 1, 2) and the constants appearing
above are all real. It was observed in [3] that the parameters have the order cg > c1 > c2 > 0
for the specific materials Brass LS-62 and Bronze Brof 35 [4]. This corresponds to the EHH
case of the GDS system according to the classification given in [3]. In order to obtain a
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well-posed problem, this system was complemented with radiation-type boundary conditions
for the variables φ1 and φ2 and null condition at infinity for the variable u. The radiation-type
boundary conditions are given along the characteristics ξ1 and ξ2 as

lim
ξ1→∞

φ1(x, y) = lim
ξ2→∞

φ1(x, y) = 0, lim
ξ1→∞

φ2(x, y) = lim
ξ2→∞

φ2(x, y) = 0.

Here, the characteristics ξ1 and ξ2 are defined as

ξ1 = −r1x + y, ξ2 = r1x + y(r1 = c1/c2). (2)

In fact, the system of (1)2 and (1)3 has many sets of characteristics among which we single
out η1 = −r2x + y and η2 = r2x + y

(
r2 = [(

c2
g − c2

1

)/(
c2
g − c2

2

)]1/2)
[1].

The aim of our paper is to establish the existence of the global solutions to the Cauchy
problem for (1) when the initial data u0 are in the Sobolev space H 1(R2) and have a small
L2(R2) norm. The first step in this direction was taken in [1] where system (1) was reduced
to a nonlinear Schrödinger (NLS) equation with non-local terms for r1 �= r2:

iut + �u = χ |u|2u + bu{α[K1(α(|u|2)x, (|u|2)y)]x + [K2(α(|u|2)x, (|u|2)y)]y},
u(0, x, y) = u0(x, y).

(3)

The non-local operators K1 and K2 that appear above are convolution-type operators that
depend on the characteristics ξ1 and ξ2 given in (2). Their explicit expressions are recalled
in the appendix. The main technical difficulty in the analysis of the Cauchy problem under
consideration originates from the lack of regularity of these operators. In the literature, this
difficulty has been circumvented for the Davey–Stewartson (DS) equations either by assuming
a smooth class of initial data or by assuming that the data are small with respect to some norm
[5–16]. Here, in order to establish the global existence of weak solutions, we will follow the
approach given in [5] and regularize both the nonlinearities and the initial data. This type
of regularization also allows us to conclude that the Hamiltonian is a decreasing function of
time. In contrast, for the DS system, Tsutsumi [7] used a different type of regularization and
obtained a pseudo-conformal inequality and the Lp(R2) decay of the weak solutions.

Our paper consists of three parts. In the second section, we obtain explicit estimates
of the solutions of the hyperbolic system, the second and third equations of (1), using the
representation obtained in [1]. In the third section, we introduce the regularized equation and
prove the global existence and uniqueness of its solutions by a fixed point argument. In the
final section, we prove our main theorem, theorem 1, by passing to the limit.

2. Estimates on the solutions of the hyperbolic system

We start by considering two asymmetrically coupled linear wave equations (1)2 and (1)3:

φ1,xx − φ1,yy − βφ2,xy = f, φ2,xx − λφ2,yy − βφ1,xy = g, (4)

where f = α(|u|2)x and g = (|u|2)y . The coefficients that appear in (4) are given by

λ = a2
1c

2
1

/(
a2

2c
2
2

)
and β = c2

1 − c2
2/(a2c2), where a1 = (

c2
g − c2

1

)1/2
and a2 = (

c2
g − c2

2

)1/2
.

An integral representation for the solutions φ1 and φ2 of equations (4) was derived in
[1]. This representation is recalled in (A.2). Since the representation is valid for r1 �= r2, we
assume that c1 �= c2. When u ∈ H 1(R2), the functions f and g that appear in (4) do not
necessarily fall into L2(R2) but to L1(R2). Our main aim in this section is to derive some
estimates on φ1 and φ2, in propositions 1 and 2, that depend only on L1(R2)-norms of f

and g.
To start with, we derive a point-wise bound for φ1 and φ2 using the representation of the

solutions given in (A.1) and the fact that the Heaviside function is bounded by 1, namely:

2
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Proposition 1. Let φ1 and φ2 be solutions of the coupled linear wave system (4); then

sup
(x,y)εR

2

|φ1(x, y)| �
(

c2
1

2c2
gr1

+
a2

1

c2
gr2

)
‖f ‖L1(R2) +

3c2a2

2c2
g

‖g‖L1(R2),

sup
(x,y)εR

2

|φ2(x, y)| � 3c2a2

2c2
g

‖f ‖L1(R2) +

(
a2

2

2c2
gr1

+
c2

2

c2
gr2

)
‖g‖L1(R2).

Further estimates on φ1 and φ2 involving their partial derivatives are more intricate in
nature. In particular, the energy of the original system (1), which is given by

E =
∫

R
2

{
|∇u|2 +

χ

2
|u|4 +

b

2
Hφ

}
dx dy,

has Hφ = (φ1,x)
2 − (φ1,y)

2 + (φ2,x)
2 − λ(φ2,y)

2 − β(φ1,yφ2,x + φ1,xφ2,y). In order to control
the energy, one needs to control Hφ . This term when written in terms of the characteristic
coordinates ξ1 and ξ2 given in (2) takes the form

Hφ(ξ1, ξ2) = (
r2

1 − 1
)[(

φ1,ξ1

)2
+

(
φ1,ξ2

)2]
+

(
r2

1 − λ
)[(

φ2,ξ1

)2
+

(
φ2,ξ2

)2]
− 2

(
r2

1 + 1
)
φ1,ξ1φ1,ξ2 − 2

(
r2

1 + λ
)
φ2,ξ1φ2,ξ2 + 2βr1

(
φ1,ξ1φ2,ξ1 − φ1,ξ2φ2,ξ2

)
. (5)

Integrals of this quantity involve integrals of φi,ξj
’s (i, j = 1, 2), which in turn involve

quadruple integration of the functions f and g on various characteristic directions. These
computations are greatly simplified due to the following observation:∫

R
4
|v1(ξ1, ξ

′
2)||v2(ξ

′
1, ξ2)|dξ ′

1 dξ ′
2 dξ1 dξ2 � 4r2

1

(∫
R

2
|v1(x, y)|dx dy

)(∫
R

2
|v2(x, y)|dx dy

)
.

(6)

Proposition 2. Let φ1 and φ2 be solutions of (4); then

Hφ =
∫

R
2
|Hφ|dx dy � b1‖f ‖2

L1(R2)
+

b1

r1r2
‖g‖2

L1(R2)
+ b2‖f ‖L1(R2)‖g‖L1(R2), (7)

where

b1 = (a1a2 + c1c2)

∣∣a2
2 − c2

1

∣∣
2c4

g

+
2a2c

2
1

c2
g

(|d1| + d2),

b2 = 2a2c2

c4
g

∣∣a2
2 − c2

1

∣∣ +
2c1

c2
gr2

(a1a2 + c1c2)(|d1| + d2),

d1 = a1a2
(
c2

1 + c2
2

) − c1c2
(
a2

1 + a2
2

)
4c2

gc
2
1a2

, d2 = a1a2
(
c2

1 + c2
2

)
+ c1c2

(
a2

1 + a2
2

)
4c2

gc
2
1a2

.

Proof. From (A.2), we deduce that

φ1,ξj
(ξ1, ξ2) = − c2

2a2
I1,ξj

+
a1

2c1

(
I2,ξj

+ I3,ξj

)
, φ2,ξj

(ξ1, ξ2) = 1

2r1

(
I1,ξj

− I2,ξj
+ I3,ξj

)
, (8)

where

I1,ξ1 = a2

2c2
gr1

(a2g2 − c1f2), I2,ξ1 = −A1,

I3,ξ1 = −A2, I1,ξ2 = a2

2c2
gr1

(a2g1 − c1f1), (9)

I2,ξ2 = c2

2c2
gr2

(c2g1 − a1f1) − r8A1, I3,ξ2 = c2

2c2
gr2

(a1f1 + c2g1) − r7A2.

3
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The functions f1, f2, g1, g2, A1 and A2 in (9) are defined by

f1 =
∫ ∞

ξ1

f (ξ ′
1, ξ2) dξ ′

1, f2 =
∫ ∞

ξ2

f (ξ1, ξ
′
2) dξ ′

2,

g1 =
∫ ∞

ξ1

g(ξ ′
1, ξ2) dξ ′

1, g2 =
∫ ∞

ξ2

g(ξ1, ξ
′
2) dξ ′

2,

A1 =
∫

R
2
δ(ξ ′

1 − ξ1 + r8(ξ
′
2 − ξ2))H(−r6(ξ

′
2 − ξ2))h1(ξ

′
1, ξ

′
2) dξ ′

1 dξ ′
2,

A2 =
∫

R
2
δ(ξ ′

1 − ξ1 + r7(ξ
′
2 − ξ2))H(r5(ξ

′
2 − ξ2))h2(ξ

′
1, ξ

′
2) dξ ′

1 dξ ′
2,

where δ(.) is the Dirac delta distribution, H is the Heaviside function and the notations fi and
gi denote integrals of the functions f and g with respect to the variable ξj . h1 and h2 are
defined in (A.3). The right-hand sides of A1 and A2 can be written in two equivalent forms as

A1 =
∫

R

H(−r6(ξ
′
2 − ξ2))h1(ξ1 − r8(ξ

′
2 − ξ2), ξ

′
2) dξ ′

2

= r7

∫
R

H(r5(ξ
′
1 − ξ1))h1(ξ

′
1, ξ2 − r7(ξ

′
1 − ξ1)) dξ ′

1 (10)

and

A2 =
∫

R

H(r5(ξ
′
2 − ξ2))h2(ξ1 − r7(ξ

′
2 − ξ2), ξ

′
2) dξ ′

2

= r8

∫
R

H(−r6(ξ
′
1 − ξ1))h2(ξ

′
1, ξ2 − r8(ξ

′
1 − ξ1)) dξ ′

1, (11)

respectively.
Substituting (8) into equation (5), we find

Hφ(ξ1, ξ2) = a2
2 − c2

1

4c4
gr

2
1

(
c2

1f1f2 − a2
2g1g2

)
+

a2c2
(
c2

1 − a2
2

)
4c4

gr1
(f1g2 − f2g1)

+
4a2

1

(
c2

1 − a2
2

)
(
c2

1 − c2
2

)
c2
g

A1A2 + [d1(c1f1 + a2g1) + d2r8(c1f2 − a2g2)]A1

+ [d2(c1f1 + a2g1) + d1r7(c1f2 − a2g2)]A2.

We choose suitable forms of A1 and A2 from (10) and (11) to use (6) in Hφ ; then we obtain

2r1Hφ �
∣∣a2

2 − c2
1

∣∣
4c4

gr
2
1

[
c2

1J1(f ) + a2
2J2(g) + a2c1(J1(g) + J2(f ))

]
+ |d1|[c1(J3(f ) + J4(f ))

+ a2(J3(g) + J4(g))] + d2[c1(J5(f ) + J6(f )) + a2(J5(g) + J6(g))]

+ r2
6

∣∣a2
2 − c2

1

∣∣J7
/
c2

2,

where the Jk’s (k = 1, . . . , 7) are given in (A.4). To find an upper bound for Hφ , we apply
(6) to each integral Jk above. J1 and J2 can be estimated directly by (6). For the rest of the
Jk terms, we will apply coordinate transformations that will simplify the four-fold integrals to
products of double integrals. In the following arguments, v stands for either f or g.

(i) If we apply the translational coordinate transformation in the integrals J3

ξ1 = ¯̄ξ1 + r8(
¯̄ξ2 − ξ̄2), ξ2 = ξ̄2, ξ ′

1 = ξ̄1, ξ ′
2 = ¯̄ξ2,

we obtain J3(v) �
∫

R
4 |v(ξ̄1, ξ̄2)||h1(

¯̄ξ1,
¯̄ξ2)|dξ̄1 dξ̄2 d ¯̄ξ1 d ¯̄ξ2.

4
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(ii) Similarly, the transformation

ξ1 = ξ̄1, ξ2 = ¯̄ξ2 + r8(
¯̄ξ1 − ξ̄1), ξ ′

1 = ¯̄ξ1, ξ ′
2 = ξ̄2

is used in J4 and leads to J4(v) �
∫

R
4 |v(ξ̄1, ξ̄2)||h2(

¯̄ξ1,
¯̄ξ2)|dξ̄1 dξ̄2 d ¯̄ξ1 d ¯̄ξ2.

(iii) If we apply the following transformation in J5:

ξ1 = ξ̄1, ξ2 = ¯̄ξ2 + r7(
¯̄ξ1 − ξ̄1), ξ ′

1 = ¯̄ξ1, ξ ′
2 = ξ̄2,

we obtain J5(v) �
∫

R
4 |v(ξ̄1, ξ̄2)||h1(

¯̄ξ1,
¯̄ξ2)|dξ̄1 dξ̄2 d ¯̄ξ1 d ¯̄ξ2.

(iv) The translational coordinate transformation in J6

ξ1 = ¯̄ξ1 + r7(
¯̄ξ2 − ξ̄2), ξ2 = ξ̄2, ξ ′

1 = ξ̄1, ξ ′
2 = ¯̄ξ2

gives J6(v) �
∫

R
4 |v(ξ̄1, ξ̄2)||h2(

¯̄ξ1,
¯̄ξ2)|dξ̄1 dξ̄2 d ¯̄ξ1 d ¯̄ξ2.

(v) Finally, the transformation that is used in J7 is given by

ξ1 = − ξ̄1

r4r6
+

¯̄ξ1

r3r5
− ξ̄2 − ¯̄ξ2

r3r6
, ξ ′

1 = ¯̄ξ1,

ξ2 = ξ̄1 − ¯̄ξ1

r3r6
+

ξ̄2

r3r5
−

¯̄ξ2

r4r6
, ξ ′

2 = ξ̄2,

and leads to J7 � 1
r4r6

∫
R

4 |h1(ξ̄1, ξ̄2))||h2(
¯̄ξ1,

¯̄ξ2)|dξ̄1 dξ̄2 d ¯̄ξ1 d ¯̄ξ2.

Combining the above estimates, we arrive at

Hφ

2r1
�

∣∣a2
2 − c2

1

∣∣
4c4

gr
2
1

(c1‖f ‖L1(R2) + a2‖g‖L1(R2))
2 +

r2

∣∣a2
2 − c2

1

∣∣
c1c2

‖h1‖L1(R2)‖h2‖L1(R2)

+ (|d1| + d2)(c1‖f ‖L1(R2) + a2‖g‖L1(R2))(‖h1‖L1(R2) + ‖h2‖L1(R2)). (12)

Since ‖hi‖L1(R2) � c2
(
a1‖f ‖L1(R2) + c2‖g‖L1(R2)

)/
(2c2

gr2), (12) becomes (7). �

3. The regularized equation

Now, we consider the Cauchy problem for (3) with an initial value u0 being in the appropriate
Sobolev space Hs(R2). The natural choice of s = 1 does not result in enough regularity for
the functions f and g that were considered in the previous section, since we need to take their
traces on various characteristic lines. In order to seek solutions in a smoother function space,
we regularize the equation as is done for the DS system in [5]. By a fixed point argument
in H 2(R2), we will first establish the global existence and uniqueness of solutions for the
regularized problem: proposition 4. Next, we will establish bounds on solutions independent
of the regularization parameter ε > 0 when the initial data of the original problem have small
enough mass: proposition 5.

For ε > 0, the regularized system is given by

iuε
t + iε�2uε

t + �uε = χ |uε|2uε + buε
[
α
(
φε

1

)
x

+
(
φε

2

)
y

]
,

uε(0, x, y) = uε
0(x, y), uε

0 ∈ H 2(R2),
(13)

where φε
1 = K1

(
α(|uε|2)x, (|uε|2)y

)
and φε

2 = K2
(
α(|uε|2)x, (|uε|2)y

)
. The key ingredient in

obtaining the global existence of solutions is the conservation of mass and energy. Here, the
mass is given by

Mε(t) ≡
∫

R
2
(|uε(t)|2 + ε|�uε(t)|2) dx dy = Mε(0), ∀t ∈ R+, (14)

5
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and the energy is given by

Eε(t) ≡
∫

R
2

(
|∇uε(t)|2 +

χ

2
|uε(t)|4 +

b

2
Hε

φ(t)

)
dx dy = Eε(0), ∀t ∈ R+, (15)

with Hε
φ = (

φε
1,x

)2 − (
φε

1,y

)2
+

(
φε

2,x

)2 − λ
(
φε

2,y

)2 − β
(
φε

1,yφ
ε
2,x + φε

1,xφ
ε
2,y

)
.

In the same spirit as propositions 1 and 2, we have the following a priori estimates for
the regularized equation (13).

Proposition 3. The following inequalities are satisfied:

(i)
∥∥φε

1

∥∥
L∞(R2)

� C1‖uε‖2
H 1(R2)

,
∥∥φε

2

∥∥
L∞(R2)

� C2‖uε‖2
H 1(R2)

, where C1 = [|α|(2a1a2 +

c1c2) + 3a2c2]
/
c2
g and C2 = [3a1c1|α| + a1a2 + 2c1c2]

/(
c2
gr1r2

)
,

(ii)
∥∥Hε

φ

∥∥
L1R

2)
� 4

(
b1α

2 + b1
r1r2

+ b2α
)‖∇uε‖2

L2(R2)
‖uε‖2

L2(R2)
.

Now we are ready to state and prove the global existence of a unique solution of the
regularized problem (13).

Proposition 4. For every uε
0 ∈ H 2(R2), the Cauchy problem (13) has a unique solution uε in

C(R+;H 2(R2)).
�

Proof. We assume that v(t) = ε(t)v0 solves the regularized linear equation:

ivt + iε�2vt + �v = 0, v(0) = v0.

We define the map

Gε(v) = (I + ε�2)−1(χ |v|2v + bv{α[K1(α(|v|2)x, (|v|2)y)]x + [K2(α(|v|2)x, (|v|2)y)]y}).
Thus, we consider the following integral equation:

uε(t) = ε(t)u
ε
0 − i

∫ t

0
ε(t − s)Gε(u

ε(s)) ds. (16)

This is equivalent to the existence of a solution to the regularized problem (13). For
uε

0 ∈ H 2(R2) and v ∈ C([0, T ];H 2(R2)), we introduce a mapping T as follows:

T v(t) = ε(t)u
ε
0 − i

∫ t

0
ε(t − s)Gε(v(s)) ds.

Hence, the integral equation (16) is the fixed-point problem for T .
By the result of Segal in [17], if the mapping Gε is locally Lipschitzian on H 2(R2)

then the integral equation (16) with uε
0 ∈ H 2(R2) has a unique maximal solution

uε ∈ C([0, T ε];H 2(R2)) which satisfies either T ε = +∞ or 0 < T ε < ∞ and
lim supt→T ε ‖uε(t)‖2

H 2(R2)
= ∞. On the other hand, mass conservation (14) is valid because

of uε ∈ C([0, T ε];H 2(R2)). Thus, we can see that the blow-up in H 2(R2) cannot occur. As
a result, we have a global unique solution uε ∈ C(R+;H 2(R2)) for uε

0 ∈ H 2(R2).

Lemma 1. The mapping Gε is locally Lipschitzian on H 2(R2).

Proof. Let v1 and v2 be in H 2(R2) with ‖v1‖H 2(R2) + ‖v2‖H 2(R2) � R. Since it is known that
the mapping v → |v|2v is locally Lipschitzian on H 2(R2), we are interested in only non-local
terms. So we define φij = Ki

(
α(|vj |2)x,

(∣∣v2
j

∣∣)
y

)
(i, j = 1, 2). From proposition 3, we have

6
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‖φi1‖L∞(R2) � CiR and from (A.1), we get ‖φi1 − φi2‖L∞(R2) � CiR‖v1 − v2‖H 1(R2). Also,
since (I + ε�2)−1/2 is an isomorphism from L2(R2) to H 2(R2), there exists Cε > 0 such that

‖(I + ε�2)−1[α(v1(φ11)x − v2(φ12)x) + (v1(φ21)y − v2(φ22)y)]‖H 2(R2)

� Cε(|α|C1 + C2)R
2‖v1 − v2‖H 1(R2). �

We now relate the regularized Cauchy problem to the original problem by taking

uε
0 = (I − εs�)−1u0, (17)

where s is a real number and 0 < s < 1/2. The following estimates show that the uε
0 ∈ H 2(R2)

and H 1(R2) norms of uε
0 are bounded, independent of ε > 0:∥∥uε

0

∥∥
L2(R2)

� ‖u0‖L2(R2),
∥∥∇uε

0

∥∥
L2(R2)

� ‖∇u0‖L2(R2),

εs
∥∥�uε

0

∥∥
L2(R2)

� ‖u0‖L2(R2). (18)

Similar estimates hold for the solutions of the regularized problem at least for small mass
initial data.

Proposition 5. For u0 ∈ H 1(R2) satisfying(
max

{
− χ

2
, 0

}
+ 2|b|

(
b1α

2 +
b1

r1r2
+ b2|α|

))
‖u0‖2

L2(R2)
< 1, (19)

there exists a constant ε0 = ε0
(
α, χ, b, b1, b2, r1, r2, ‖u0‖2

L2(R2)

)
and a constant C0 = C0(

α, χ, b, b1, b2, r1, r2, ‖u0‖2
L2(R2)

)
such that

‖uε(t)‖H 1(R2) � C0, ∀t � 0, ∀ε ∈ (0, ε0). (20)

Proof. We choose u0 ∈ H 1(R2) which satisfies (19) and set μ = max{−χ/2, 0} + 2|b|(b1 +
b1r1r2α

2 + b2r1r2|α|)/(r1r2) and k = μ‖u0‖2
L2(R2)

< 1. First, using (14), we can prove that

uε(t) is uniformly bounded in L2(R2). By (14) and (18) with ε0 = [(1 − k)/(2k)]1/(1−2s), we
obtain

μ‖uε‖2
L2(R2)

� μ(1 + ε1−2s)‖u0‖2
L2(R2)

� 1 + k

2
< 1,

∀t � 0 and ∀ε ∈ (0, ε0). (21)

Second, by using (15), we can show that ∇uε(t) is uniformly bounded in L2(R2).
Thus, we apply the proposition 3 inequality and the Ladyzenskaya inequality ‖uε‖4

L4(R2)
�

‖uε‖2
L2(R2)

‖∇uε‖2
L2(R2)

in (15) [18]:

‖∇uε‖2
L2(R2)

� μ‖uε‖2
L2(R2)

‖∇uε‖2
L2(R2)

+ Eε(0).

Then by using equation (21), we get

‖∇uε‖2
L2(R2)

� 2(1 − k)−1Eε(0). (22)

To find the upper bound of Eε(0), we use the inequalities, (18), proposition 3 and the
Ladyzenskaya inequality in (15):

Eε(0) � C3‖∇u0‖2
L2(R2)

, (23)

where C3 = {1 + [max{χ/2, 0} + 2|b|(b1α
2 + b1/(r1r2) + b2α)]‖u0‖L2(R2)}. Combining

equations (22) and (23), we obtain

‖∇uε(t)‖2
L2(R2)

� 2C3

1 − k
‖∇u0‖2

L2(R2)
, ∀t � 0 and ∀ε ∈ (0, ε0). (24)

Hence, uε is uniformly bounded in C(R+;H 1(R2)) because of (21) and (24). �

7
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4. Passing to the limit as ε → 0

In this section, we will show that a subsequence of {uε} converges to v which satisfies the
non-local NLS system. Thus, we will pass to the limit as ε → 0 in (13). First, we assume that
u0 in H 1(R2) satisfies (19), so uε is uniformly bounded in H 1(R2) for ε ∈ (0, ε0) and satisfies
(20). Then, to see that uε

t is bounded independently of ε in H−1(R2), we use equation (13):∥∥uε
t

∥∥
H−1(R2)

� 2‖uε‖H 1(R2) + C4|χ |‖uε‖3
H 1(R2)

+ |b|∥∥uε
{
α
(
φε

1

)
x

+
(
φε

2

)
y

}∥∥
H−1(R2)

. (25)

Now, we show that uε(α(φε
1)x + (φε

2)y) is also bounded independently of ε in H−1(R2):

∥∥uε
{
α
(
φε

1

)
x

+
(
φε

2

)
y

}∥∥
H−1(R2)

= sup
‖ϕ‖

H1 �1

∣∣∣∣
∫

R
2
uε

{
α
(
φε

1

)
x

+
(
φε

2

)
y

}
ϕ dx dy

∣∣∣∣
�

[‖∇uε‖L2(R2) + ‖uε‖L2(R2)

][|α|∥∥φε
1

∥∥
L∞(R2)

+
∥∥φε

2

∥∥
L∞(R2)

]
.

Then using proposition 3, we have∥∥uε
[
α
(
φε

1

)
x

+
(
φε

2

)
y

]∥∥
H−1(R2)

� 2(|α|C1 + C2)‖uε‖3
H 1(R2)

. (26)

As a result of equations (20), (25) and (26), for every t � 0 and ε ∈ (0, ε0),

‖uε(t)‖H 1(R2) + ‖uε
t (t)‖H−1(R2) � C ′

0. (27)

Because of this bound, we can extract from {uε} a subfamily which converges to v ∈
L∞(R+;H 1(R2)) in the weak star topology and also from

{
uε

t

}
a subfamily which converges

to w ∈ L∞(R+;H−1(R2)) in the weak star topology, according to the Alaoglu theorem. One
can easily see that w = vt . Hence, v ∈ C

(
R+;H 1

w(R2)
)
. We still denote this subsequence by

{uε}.
It remains to show that this v is in fact a solution to our Cauchy problem, i.e. it satisfies

the initial value v(0) = u0 as well as equation (3). From the way we have regularized the
initial data of (3) in (17), v(0) = u0 follows directly. Passing to the limit in (13) is more
involved. Since we seek distributional solutions of (3), it suffices to consider the solutions
on [0, T ] × V where V = [−R,R] × [−R,R] with R, T > 0 fixed. This follows from
a Cantor diagonalization argument applied to all R, T ∈ N. Then we will have a master
subsequence {uε} that converges to v for all the choices of R and T in N. Although we fix
R and T, depending on the test function, throughout the argument below they are allowed to
be arbitrarily large. The sequence {uε} converges to v in the weak star topologies and linear
operators respect this convergence. As for the nonlinear terms, they are of two types. The
local one, |uε|2uε, can be handled via the Aubin–Lions compactness theorem [19] at least in
[0, T ] × V since H 1(V ) ↪→ Lp(V ) compactly for all p ∈ [2,∞). Thus, we have

uε → v in Lp((0, T ); Lp(V )), ∀p ∈ [2,∞).

The non-local terms that involve φε
1 and φε

2 require finer analysis. The non-local nonlinearity
involves products of forms uε

(
φε

1

)
x

and uε
(
φε

2

)
y
; we can only hope for weak convergence

for
(
φε

1

)
x

and
(
φε

1

)
y

terms. So we need to establish strong convergence for the term uε with
respect to a good topology. The following three propositions establish these.

Proposition 6. There exists �1, �2 ∈ L∞(R+ × R
2) such that α

(
φε

1

)
x

+
(
φε

2

)
y

⇀

α(�1)x + (�2)y in the weak star topology of L∞(R+;Lq(V )) for any q ∈ [1, 2).

Proof. By proposition 3 and (27), φε
1 and φε

2 are uniformly bounded in L∞(R+ × R
2). Thus

we can extract from φε
1 and φε

2 subsequences which converge to �1 ∈ L∞(R+ ×R
2) and �2 ∈

L∞(R+ × R
2), respectively, in the weak star topology. Now, since uε ∈ Lp((0, T );Lp(V )),

8
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we can obtain the fact that the sequences
(
φε

1

)
x

and
(
φε

2

)
y

are bounded in L∞(R+;Lq(V )) for
every q ∈ [1, 2) and R > 0.

We find φ1,x and φ2,y in the characteristics ξ1, ξ2, η1 and η2 by using equation (15) given
in [1] as follows:(

φε
1

)
x

= α1|uε(ξ1, ξ2)|2 + α2|uε(η1, η2)|2 + α3(J1 + J2) + α4(J3 + J4),(
φε

2

)
y

= α5|uε(ξ1, ξ2)|2 + α6|uε(η1, η2)|2 + α7(J1 + J2) + α8(J3 + J4),
(28)

where

J1(ξ1, ξ2) =
∫ ∞

ξ1

(|uε(ξ ′
1, ξ2)|2)ξ2 dξ ′

1, J2(ξ1, ξ2) =
∫ ∞

ξ2

(|uε(ξ1, ξ
′
2)|2)ξ1 dξ ′

2,

J3(η1, η2) =
∫ ∞

η1

(|uε(η′
1, η2)|2)η2 dη′

1, J4(η1, η2) =
∫ ∞

η2

(|uε(η1, η
′
2)|2)η1 dη′

2.

The coefficients that appear in (28) are also defined in (A.5). Then we get∥∥(
φε

1

)
x

∥∥
Lq(V )

� (|α1| + |α2|)‖uε‖2
L2q (V ) + |α3|(‖J1‖Lq(V ) + ‖J2‖Lq(V ))

+ |α4|(‖J3‖Lq(V ) + ‖J4‖Lq(V )).

Because of 1 � q < 2 and inequality (20), ‖uε‖L2q (V ) is uniformly bounded. Thus, we
will show that Ji (i = 1, . . . , 4) are bounded in Lq(V ). If V = [−R1, R1]2 with respect to
coordinates (ξ1, ξ2), then its image under the linear transformation (ξ1, ξ2) → (η1, η2) still
lies inside [−R2, R2]2 for a suitable R2 > 0. This allows us to make the following estimates:

‖J1‖q

Lq(V ) = 1

2r1

∫
V

∣∣∣∣ ∂

∂ξ2

∫ ∞

ξ1

|uε(ξ ′
1, ξ2)|2 dξ ′

1

∣∣∣∣
q

dξ1 dξ2

� 2qR1

r1

∫ R1

−R1

(∫ ∞

−∞

∣∣uε
ξ2

∣∣2
dξ ′

1

) q

2
(∫ ∞

−∞
|uε|2 dξ ′

1

) q

2

dξ2

� 2qR1

r1

(∫ R1

−R1

∫ ∞

−∞

∣∣uε
ξ2

∣∣2
dξ ′

1 dξ2

) q

2
(∫ R1

−R1

(∫ ∞

−∞
|uε|2 dξ ′

1

) q

2−q

dξ2

) 2−q

2

.

Since for uε ∈ H 1(R2), we have the classical trace estimate

‖J1‖q

Lq(V ) � 2
3q

2 R1r
q−2

2
1 ‖uε‖q

H 1(R2)

(∫ R1

−R1

(∫ ∞

−∞

∫ ξ2

−∞
(|uε|2)ξ ′

2
dξ ′

2 dξ ′
1

) q

2−q

dξ2

) 2−q

2

� 2
3q+2

2 R
4−q

2
1 r

q−2
2

1 ‖uε‖q

H 1(R2)

[(∫
R

2
|uε|2 dξ ′

2 dξ ′
1

) 1
2
(∫

R
2
|(uε)ξ ′

2
|2 dξ ′

2 dξ ′
1

) 1
2

] q

2

� 22q+1R
4−q

2
1 r

q−1
1 ‖uε‖2q

H 1(R2)
,

similarly, ‖J3‖q

Lq(V ) � 22q+1R
4−q

2
2 r

q−1
2 ‖uε‖2q

H 1(R2)
. The same calculations can be performed for

J2 and J4 and then
(
φε

2

)
y
. Hence,

(
φε

1

)
x

and
(
φε

2

)
y

are bounded in Lq(V ). Thus,
(
φε

1

)
x

⇀

(�1)x and
(
φε

2

)
y

⇀ (�2)y in the weak star topology of L∞(R+;Lq(V )). �

At this point, using all the previous weak convergence results, we can pass to the limit as
ε → 0 in (13):

ivt + �v = χ |v|2v + bv[α(�1)x + (�2)y]. (29)

9
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We still need to show that �1 = K1(α(|v|2)x, (|v|2)y) and �2 = K2((α(|v|2)x, (|v|2)y), in
order to conclude that v solves the original equation (3) in the distributional sense. To this
end, we start with a strong convergence result for the sequence {uε}.
Proposition 7. The sequence {uε} converges strongly to v in L2((0, T );L2(R2)).

Proof. By using (29), we get ‖vt‖H−1(R2) � 2‖v‖H 1(R2) + C4|χ |‖v‖3
H 1(R2)

+ |b|[‖∇v‖L2(R2) +

‖v‖L2(R2)][|α|‖�1‖L∞(R2) + ‖�2‖L∞(R2)]. So we obtain vt ∈ L∞(R+;H−1(R2)), since
v ∈ C(R+;H 1(R2)) and �1, �2 ∈ L∞(R+ × R

2). Hence, the distributional time derivative
of

∫
R

2 |v(t, x, y)|2 dx dy is equal to 2Re〈v, vt 〉, where 〈, 〉 denotes the duality pairing between
H 1(R2) and H−1(R2). Knowing that �1 and �2 are real-valued functions and using
equation (29), we have Re〈v, vt 〉 = 0 which leads to ‖v(t)‖L2(R2) = ‖u0‖L2(R2) for all t � 0.

On the other hand, using (14) and (18), we have∫
R

2
(|uε|2 + ε|�uε|2) dx dy � ‖u0‖2

L2(R2)
+ ε1−2s‖u0‖2

L2(R2)
. (30)

Then we integrate (30) with respect to t for every T > 0:∣∣∣∣
∫ T

0

∫
R

2
(|uε|2 + ε|�uε|2) dx dy dt − T

∫
R

2
|u0|2 dx dy

∣∣∣∣ � T ε1−2s‖u0‖2
L2(R2)

,

which means

lim
ε→0

∫ T

0

∫
R

2
(|uε|2 + ε|�uε|2) dx dy dt =

∫ T

0

∫
R

2
|v(t)|2 dx dy dt. (31)

Since (uε,
√

ε�uε) converges weakly to (v, 0) in L2((0, T ) × R
2) and equation (31), {uε}

converges strongly to v in L2((0, T );L2(R2)). �

Proposition 8. �1 = K1
(
α(|v|2)x, (|v|2)y

)
and �2 = K2

(
(α(|v|2)x, (|v|2)y

)
.

Proof. We take ζ ∈ D((0,∞) × R
2) as a real-valued test function with support in [0, T ] × V

and use equation (A.1):∫ T

0

∫
V

φε
1(t, x, y)ζ(t, x, y) dx dy dt

= 2
∫ T

0

∫
V

∫
R

2
Re(αK1(x

′, y ′, x, y)uε
x(t, x

′, y ′)uε∗(t, x ′, y ′)

+ K2(x
′, y ′, x, y)uε

y(t, x
′, y ′)uε∗(t, x ′, y ′))ζ(t, x, y) dx ′ dy ′ dx dy dt. (32)

Because of proposition 7, we can pass to the limit as ε → 0 in (32):∫ T

0

∫
V

�1(t, x, y)ζ(t, x, y) dx dy dt =
∫ T

0

∫
V

∫
R

2
[αK1(x

′, y ′, x, y)(|v(t, x ′, y ′)|2)x
+ K2(x

′, y ′, x, y)(|v(t, x ′, y ′)|2)y]ζ(t, x, y) dx ′ dy ′ dx dy dt.

A similar calculation can be performed for �2. �

Finally, the global existence of solutions to (1) can be expressed as follows.

Theorem 1. For r1 �= r2, 1 � q < 2, and for every u0 ∈ H 1(R2) such that(
max

{
−χ

2
, 0

}
+ 2|b|

(
b1α

2 +
b1

r1r2
+ b2|α|

))
‖u0‖2

L2(R2)
< 1,

10
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there exist u, φ1 and φ2 with

u ∈ L∞(R+;H 1(R2)) ∩ C
(
R+;H 1

w(R2)
)
,

φ1, φ2 ∈ L∞(R+; Cb(R
2)), ∇φ1,∇φ2 ∈ L∞(

R+;L
q

loc(R
2)

)
that satisfy (1) in the sense of distributions.

Remark. Theorem 1 is valid for r1 = r2, the decoupled system, if the small initial condition
is replaced by [max{−χ/2, 0} + 2|b|(α2 + 1)]‖u0‖2

L2(R2)
< 1 (see [5]).
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Appendix

The integral representation of the solution to the coupled wave equations (1)2 and (1)3, when
r1 �= r2, is obtained in [1]:

φ1(x, y) = K1(α(|u|)x, (|u|)y), φ2(x, y) = K2(α(|u|)x, (|u|)y), (A.1)

where the integral operators K1 and K2 are defined as

K1(f, g)(x, y) =
∫

R
2
[K1(x

′, y ′, x, y)f (x ′, y ′) + K2(x
′, y ′, x, y)g(x ′, y ′)] dx ′ dy ′,

K2(f, g)(x, y) =
∫

R
2
[K2(x

′, y ′, x, y)f (x ′, y ′) + K3(x
′, y ′, x, y)g(x ′, y ′)] dx ′ dy ′,

with the kernel functions Ki(x
′, y ′, x, y) (i = 1, 2, 3) given by

K1(x
′, y ′, x, y) = [−c1c2H(−r1(x

′ − x) + y ′ − y)H(r1(x
′ − x) + y ′ − y)

− a1a2H(r4(r2(x
′ − x) + y ′ − y))H(−r6(r1(x

′ − x) + y ′ − y))

− a1a2H(r3(−r2(x
′ − x) + y ′ − y))H(r5(r1(x

′ − x) + y ′ − y))]
/(

2c2
g

)
,

K2(x
′, y ′, x, y) = c2a2[H(−r1(x

′ − x) + y ′ − y)H(r1(x
′ − x) + y ′ − y)

+ H(r4(r2(x
′ − x) + y ′ − y))H(−r6(r1(x

′ − x) + y ′ − y))

−H(r3(−r2(x
′ − x) + y ′ − y))H(r5(r1(x

′ − x) + y ′ − y))]
/(

2c2
g

)
,

K3(x
′, y ′, x, y) = [−a1a2H(−r1(x

′ − x) + y ′ − y)H(r1(x
′ − x) + y ′ − y)

− c1c2H(r4(r2(x
′ − x) + y ′ − y))H(−r6(r1(x

′ − x) + y ′ − y))

− c1c2H(r3(−r2(x
′ − x) + y ′ − y))H(r5(r1(x

′ − x) + y ′ − y))]
/(

2c2
gr1r2

)
,

where a1 = (
c2
g − c2

1

)1/2
, a2 = (

c2
g − c2

2

)1/2
, r3 = 2r1/(r1 + r2), r4 = 2r1/(r1 − r2), r5 =

2r2/(r1 + r2) and r6 = 2r2/(r1 − r2).
The integral forms of the solution, φ1 and φ2, are written in terms of (ξ1, ξ2) as

φ1(ξ1, ξ2) = [−c1c2I1 + a1a2(I2 + I3)]/(2a2c1), φ2(ξ1, ξ2) = (I1 − I2 + I3)/(2r1),

(A.2)

11
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where

I1 = a2

2c2
gr1

∫
R

2
H(ξ ′

1 − ξ1)H(ξ ′
2 − ξ2)[c1f (ξ ′

1, ξ
′
2) − a2g(ξ ′

1, ξ
′
2)] dξ ′

2 dξ ′
1,

I2 =
∫

R
2
H(ξ ′

1 − ξ1 + r8(ξ
′
2 − ξ2))H(−r6(ξ

′
2 − ξ2))h1(ξ

′
1, ξ

′
2) dξ ′

1 dξ ′
2,

I3 =
∫

R
2
H(ξ ′

1 − ξ1 + r7(ξ
′
2 − ξ2))H(r5(ξ

′
2 − ξ2))h2(ξ

′
1, ξ

′
2) dξ ′

1 dξ ′
2,

with r7 = (r1 − r2)/(r1 + r2), r8 = (r1 + r2)/(r1 − r2) and

h1 = c2

2c2
gr2

(−a1f + c2g), h2 = − c2

2c2
gr2

(a1f + c2g). (A.3)

The expressions Jk(k = 1, . . . , 7) are given by

J1(v) =
∫

R
2

∫ ∞

ξ2

∫ ∞

ξ1

|v(ξ1, ξ
′
2)||f (ξ ′

1, ξ2)| dξ ′
1 dξ ′

2 dξ1 dξ2,

J2(v) =
∫

R
2

∫ ∞

ξ2

∫ ∞

ξ1

|v(ξ1, ξ
′
2)||g(ξ ′

1, ξ2)| dξ ′
1 dξ ′

2 dξ1 dξ2,

J3(v) =
∫

R
3

∫ ∞

ξ1

H(−r6(ξ
′
2 − ξ2))|v(ξ ′

1, ξ2)||h1(ξ1 − r8(ξ
′
2 − ξ2), ξ

′
2)| dξ ′

1 dξ ′
2 dξ1 dξ2,

J4(v) =
∫

R
3

∫ ∞

ξ2

H(−r6(ξ
′
1 − ξ1))|v(ξ1, ξ

′
2)||h2(ξ

′
1, ξ2 − r8(ξ

′
1 − ξ1))| dξ ′

1 dξ ′
2 dξ1 dξ2,

J5(v) =
∫

R
3

∫ ∞

ξ2

H(r5(ξ
′
1 − ξ1))|v(ξ1, ξ

′
2)||h1(ξ

′
1, ξ2 − r7(ξ

′
1 − ξ1))| dξ ′

1 dξ ′
2 dξ1 dξ2,

J6(v) =
∫

R
3

∫ ∞

ξ1

H(r5(ξ
′
2 − ξ2))|v(ξ ′

1, ξ2)||h2(ξ1 − r7(ξ
′
2 − ξ2), ξ

′
2)| dξ ′

1 dξ ′
2 dξ1 dξ2,

J7 =
∫

R
4
H(−r6(ξ

′
1 − ξ1))H(−r6(ξ

′
2 − ξ2))

×|h1(ξ1 − r8(ξ
′
2 − ξ2), ξ

′
2)||h2(ξ

′
1, ξ2 − r8(ξ

′
1 − ξ1))| dξ ′

1 dξ ′
2 dξ1 dξ2. (A.4)

The coefficients αj (j = 1, . . . , 8) are given by

α1 = c2

2c2
g

(αc1r1 − a2), α2 = a2

2c2
g

(αa1r2 + c2), α3 = c2

4c2
g

(αc1r1 + a2),

α4 = a2

4c2
g

(αa1r2 − c2), α5 = a2

2c2
gr

2
1

(αc1r1 − a2), α6 = − c2

2c2
gr

2
2

(αa1r2 + c2),

α7 = a2

4c2
gr

2
1

(αc1r1 + a2), α8 = − c2

4c2
gr

2
2

(αa1r2 − c2). (A.5)
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